

HEF-1603010102010100 Seat No. ____

M. Sc. (Sem. I) (CBCS) Examination

November/December - 2017

Physics: CT - 01

(Mathematical Physics & Classical Mechanics) Time : $2\frac{1}{2}$ Hours] [Total Marks: 70 **Instructions:** (1) Attempt all questions. (2) All questions carry equal marks. (3)Mathematical symbols have usual meanings. 1 Answer in brief any seven: 14 Define differential and partial differential equations. 02 (a) What are the order and degree of differential 02 equation? Calculate Wronskian for (c) $y_1 = \sin x$, $y_2 = \cos x$ and $X = \sin x$. 02

(d)	Find the Laplace transform for 1.	02
(e)	Write the properties of Laplace transforms.	02
(f)	What is cyclic coordinate?	02
(g)	Prove for Poisson's bracket, $[X, X] = 0$.	02
(h)	Consider a generating function $F_2 = q_i P_i$ and prove	02
	that it generates identity transformation.	
(i)	Define Hamilton's characteristic function.	02
(j)	Why earth is oblate ellipsoid?	02

- 2 Answer any two of following questions:
- 14 2 07
- (a) Find out the solution for homogeneous second order differential equation: y'' + P(x) y' + Q(x) y = 0 using changing independent variable method.
- (b) Using variation of parameters method, solve the equation: y'' + P(x) y' + Q(x) y = X.
- (c) What is Frobenius' method? Solve the equation: y'' + xy' + y = 0 using Frobenius' method.
- 3 (a) What is the Laplace transform for coskt? 05
 - (b) What is the Fourier transform of $F(x) = I-x^2$ 05 (for |x| < 1) and F(x) = 0 (for |x| > 1)?
 - (c) Find out the Laplace transform for F(t) = t. 04
 OR
 - (a) Obtain the differential equation of orbit for both, potential as well as force.
 - (b) Prove: for elliptical orbit, the semi-major axis depends 05 only on the energy.
 - (c) Prove: for Poisson's brackets, $[pi, H], H] = \ddot{p}_i$
- 4 Answer any two of following questions: 14
 - (a) Define canonical transformation and derive the transformation equations for F_1 (q, Q, t) generating function only.
 - (b) Solve the following integral equation of orbit 07

$$\int dt = \int \frac{dr}{\left[\frac{2}{m}\left(E - V(r) - \frac{l^2}{2mr^2}\right)\right]^{1/2}}$$

Solution of this integral gives equation of which geometrical shape?

		significance of Hamilton's principal function.	
5	Ans	wer any two of following questions :	14
	(a)	Write a note on Fourier sine and cosine transforms.	07
	(b)	Discuss the solution of boundary value problems using Fourier transforms.	07
	(c)	Write a note on Coriolis force.	07
	(d)	Write a note on Virial theorem.	07

(c) Obtain (i) Hamilton-Jacobi equation and (ii) physical

07